

Heap Coding Questions

- Basic Level (Understanding Heap Operations)
 - 1. Insert into Max Heap
 - o Implement insertion in a Max Heap. Print the heap array after each insertion.
 - 2. Delete Root from Min Heap
 - Implement deletion of the root in a Min Heap. Show the heap after each step.
 - 3. Build Heap
 - Given an unsorted array, convert it into a Max Heap using the heapify process.
 - 4. Heap Sort
 - Implement Heap Sort using a Max Heap.
 - 5. Check Heap Property
 - Given a binary tree (array representation), check if it satisfies the Max Heap property.

bal.in

- Medium Level (Problem-Solving with Heaps)
 - 6. Kth Largest Element in an Array
 - Input: nums = [3,2,1,5,6,4], k = 2 → Output: 5.
 - 7. Kth Smallest Element in an Array
 - Similar to above but with Min Heap.

8. Sort a Nearly Sorted Array (K-Sorted Array)

 Given an array where every element is at most k places away from its sorted position, sort it using a heap.

9. Merge K Sorted Arrays

o Input: [[1,4,5],[1,3,4],[2,6]] → Output: [1,1,2,3,4,4,5,6].

10. Find the K Closest Numbers

• Given an array and a number x, find the k closest numbers to x using a heap.

Hard Level (Advanced / Company-Level)

11. Median of a Running Stream

 Continuously add numbers from a stream and print the median at each step using two heaps.

12. Top K Frequent Elements

• Input: nums = [1,1,1,2,2,3], k = $2 \rightarrow \text{Output:} [1,2]$.

13. Minimum Cost to Connect Ropes

• Input: $[4, 3, 2, 6] \rightarrow \text{Output: } 29 \text{ (because } (2+3=5) + (5+4=9) + (9+6=15) = 29).$

14. Reorganize String

• Rearrange a string so that no two adjacent characters are the same using a Max Heap.

15. Task Scheduler

Jraining for Professional Competence

Given tasks and cooldown time, find the minimum intervals required to finish all tasks using a heap.

www.tpcglobal.in